elect. de valencia

Op A c1.-

Considere las moléculas CS₂, OCl₂, PH₃, CHCl₃, y responda razonadamente a las siguientes cuestiones:

- a) Represente la estructura de Lewis de cada una de éstas moléculas y prediga su geometría.
- b) Explique, en cada caso, si la molécula tiene o no momento dipolar.

Config. electrónica

DATOS.- Números atómicos: H = 1; C = 6; O = 8; P = 15; S = 16; Cl = 17.

	C 1. O 1. P 1.	s^{1} $s^{2} 2s^{2}2p^{2}$ $s^{2} 2s^{2}2p^{4}$ $s^{2} 2s^{2}2p^{6} 3s^{2}3p^{3}$ $s^{2} 2s^{2}2p^{6} 3s^{2}3p^{4}$ $s^{2} 2s^{2}2p^{6} 3s^{2}3p^{5}$	1 4 6 5 6 7	
a)	CS_2	s=c=s	lineal	
	OCl_2	CI – O – CI	angular	8.0
	PH_3	H I H	pirámide tri	gonal
	CHCl ₃	CIC CI	pirámide trigon	al

b) Todas las moléculas tienen momento bipolar, excepto el CS₂.

Op A p2.-

La primera etapa de la síntesis industrial del ácido sulfúrico, H₂SO₄, corresponde a la obtención del dióxido de azufre, SO₂. Este óxido se puede preparar por calentamiento de pirita de hierro, FeS2, en presencia de aire, de acuerdo con la siguiente reacción ajustada:

$$4 \text{ FeS}_2(s) + 11 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2\text{O}_3(s) + 8 \text{ SO}_2(g)$$

Si el rendimiento de la reacción es del 80% y la pureza de la pirita del 85% (en peso), calcule:

- a) La masa en kg de SO₂ que se obtendrá a partir del tratamiento de 500 kg de pirita.
- b) El volumen de aire a 0,9 atmósferas y 80°C que se requerirá para el tratamiento de los 500 kg de pirita.

DATOS.- Masas atómicas: O = 16; S = 32; Fe = 55.8; R = 0.082 atm·L/mol·K; el aire contiene el 21% en volumen de oxígeno.

- a) $363,3 \ kg \ de \ SO_2$
- b) 1195320 *L de aire*

Op A c3.-

Aplicando la teoría ácido-base de Brönsted-Lowry, explique razonadamente, escribiendo las ecuaciones químicas adecuadas, si las siguientes especies químicas:

- a) NH_3 ; b) CN^- ; c) CH_3COOH ; d) HCl, se comportan como ácidos o como bases. Indique, en cada caso, cuál es el ácido o la base conjugada para cada una de dichas especies.
 - a) NH₃ base
 b) CN⁻ base
 Ác. conjugado NH₄⁺
 Ác. conjugado CNH
 - c) CH₃COOH ácido Base conjugada CH₃COO⁻
 - d) HCl ácido Base conjugada Cl⁻

Op A p4.-

El ácido fórmico, HCOOH, es un ácido monoprótico débil. Se preparan 600 mL de una disolución de ácido fórmico que contiene 6,9 g de dicho ácido. El pH de esta disolución es 2,173.

- a) Calcule la constante de acidez, Ka, del ácido fórmico.
- b) Si a 10 mL de la disolución de ácido fórmico se le añaden 25 mL de una disolución de hidróxido sódico 0,1M, razone si la disolución resultante será ácida, neutra o básica. DATOS.- Masas atómicas: H =1; C = 12; O = 16.
 - a) $K_a = 1.85 \cdot 10^{-4}$
 - b) La disolución será NEUTRA.

Op A c5.-

Formule o nombre, según corresponda, los siguientes compuestos.

- a) peróxido de sodio b) ácido cloroso c) óxido de cobre (II) d) propanona
- e) metoxietano (etil metil éter)
- f) KMnO₄ g) NaHCO₃ h) CH₃-CH₂OH
- i) CH₃-CH=CH-CH₂-CH₃ j) CH₃-CO-CH₂-CH₃
 - a) Na_2O_2
- b) HCl₂O
- c) CuO

- d) $CH_3 CO CH_3$
- e) $CH_3 CH_2 O CH_3$
- f) Permanganato de potasio
- g) Carbonato ácido de sodio

- h) Etanol
- i) 2 enteno
- j) 2 butanona

Op B c1.-

Considere los elementos A, B, C y D de números atómicos A=17, B=18, C=19, D=20. A partir de las configuraciones

electrónicas de estos elementos responda, razonadamente, a las cuestiones siguientes:

- a) Ordene los elementos A, B, C y D en orden creciente de su primera energía de ionización.
- b) Escriba la configuración electrónica del ión más estable que formará cada uno de estos elementos.

A
$$1s^2 2s^2 2p^6 3s^2 3p^5$$

B $1s^2 2s^2 2p^6 3s^2 3p^6$
C $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
D $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

- a) C < D < A < B
- c) B no forma iones (es un gas noble) Para el resto: $1s^2 2s^22p^6 3s^23p^6$

Op B p2.-

La combustión de mezclas hidrógeno-oxígeno se utiliza en algunas operaciones industriales cuando es necesario alcanzar altas temperaturas. Teniendo en cuenta la reacción de combustión del hidrógeno en condiciones estándar,

$$H_{2}\left(g\right)+\frac{1}{2}O_{2}\left(g\right)\to H_{2}O\left(l\right)\Delta H_{1}^{o}=-285,8\ kJ$$

y la reacción de condensación del vapor de agua en condiciones estándar,

$$H_2O (g) \rightarrow H_2O (l) \Delta H_2^o = -44.0 \text{ kJ}$$

Calcule:

a) La entalpía de combustión del hidrógeno cuando da lugar a la formación de vapor de agua:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) \Delta H_3^0$$

b) La cantidad de energía en forma de calor que se desprenderá al quemar 9 g de hidrógeno, $H_2(g)$, y 9 g de oxígeno, $O_2(g)$, si el producto de la reacción es vapor de agua.

DATOS.- Masas atómicas: H = 1; O = 16.

- a) $\Delta H^{o}_{3} = -241.5 \, kJ$
- b) $\Delta H = -135,84 \, kJ$

Op B c3.-

El ión amonio, NH₄⁺, es un ácido débil que se disocia parcialmente de acuerdo con el siguiente equilibrio:

$$NH_4^+$$
 (ac) + $H_2O(1) \iff NH_3(ac) + H_3O^+$ (ac) $\Delta H^0 = +52.2 \text{ kJ}$

Explique cuál es el efecto sobre el grado de disociación del ácido NH₄⁺, si después de alcanzarse el equilibrio se introducen los siguientes cambios:

- a) Añadir una pequeña cantidad de ácido fuerte (tal como HCl).
- b) Añadir una pequeña cantidad de base fuerte (tal como NaOH).
- c) Adicionar más NH₃.
- d) Agregar una pequeña cantidad de NaCl.
- e) Elevar la temperatura de la disolución.
- a) Disminuye. b) Aumenta. c) Disminuye. d) No se altera. d) Aumenta.

Op B p4.-

A 375 K el SO₂Cl₂ (g) se descompone parcialmente según el siguiente equilibrio:

$$SO_2Cl_2(g) \le SO_2(g) + Cl_2(g) K_p = 2,4 (a 375 K)$$

Se introducen 0,05 moles de SO₂Cl₂ (g) en un recipiente cerrado de 2 L de capacidad, en el que previamente se ha hecho el vacío, y se calienta a 375 K. Cuando se alcanza el equilibrio a dicha temperatura, calcule:

- a) La presión parcial de cada uno de los gases presentes en el equilibrio a 375 K.
- b) El grado de disociación del SO₂Cl₂ (g) a la citada temperatura.

DATOS: $R = 0.082 \text{ atm} \cdot L/K \cdot mol$

- a) $p(SO_2Cl_2) = 0.154 \text{ atm}$ $p(SO_2) = p(Cl_2) = 0.615 \text{ atm}$
- b) $\alpha = 80 \%$

Op B c5.-

Dada la reacción: $2 \text{ NO } (g) + \text{Cl}_2 (g) \rightarrow 2 \text{ NOCl}(g)$,

- a) Defina el término velocidad de reacción e indique sus unidades.
- b) Experimentalmente se ha obtenido que la reacción anterior es de orden 2 respecto del NO y de orden 1 respecto del cloro. Escriba la ecuación de velocidad para la citada reacción e indique el orden total de la reacción.
- c) Deduzca las unidades de la constante de velocidad de la reacción anterior.
 - a) $V_R = variación de la concentración en función del tiempo unidades <math>V_R = mol \cdot L^{-1} \cdot s^{-1}$
 - b) orden total = 3
 - c) unidades de $k = mol^{-2} \cdot L^2 \cdot s^{-1}$