

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE

Septiembre 2009 QUÍMICA. CÓDIGO 60

BLOQUE PRIMERO: conteste a un máximo de 4 preguntas. 1,5 puntos por pregunta

- 1. Razone si son verdaderas o falsas las siguientes afirmaciones:
 - a) Ar y S²⁻ tienen la misma configuración electrónica.
 - b) Ar y S²⁻ tienen el mismo número de protones.
 - c) Ar tiene mayor energía de ionización que S.
- 2. Conteste a las siguientes cuestiones sobre ácido-base:
 - a) Indique cuales son los ácidos conjugados de HPO₄²⁻ y OH⁻.
 - b) ¿Qué efecto produce la adición de una base a una disolución acuosa de amoniaco? En todos los casos escribir los equilibrios químicos que justifiquen su respuesta.
- 3. Dadas las siguientes reacciones:

1.- $C(s) + H_2O(g) \leftrightarrows CO(g) + H_2(g)$

 $\Delta H^{o} = 131.3 \text{ KJ.mol}^{-1}$

2.- $Ca(OH)_2(s) + CO_2(g) \leftrightarrows CaCO_3(s) + H_2O(g)$

 $\Delta H^{o} = 153.7 \text{ KJ.mol}^{-1}$

Razone el efecto que tiene sobre la situación de equilibrio de cada una de las siguientes modificaciones.

- a) Una disminución del volumen en la reacción 1.
- b) Un aumento de la presión en la reacción 2.
- c) Un aumento de la temperatura en la reacción 2.
- 4. Dada la siguiente reacción: $KMnO_{4(aq)} + SnCl_{2(aq)} + HCl_{(aq)} \rightarrow SnCl_{4(aq)} + MnCl_{2(aq)} + KCl_{(aq)} + H_2O_{(1)}$
 - a) Ajuste la siguiente reacción, en forma molecular, por el método del ion-electrón.
 - b) Calcule el peso equivalente del agente reductor.
- 5. Un compuesto orgánico está formado por carbono, hidrógeno y oxígeno. 1,0 g ocupa 1,0 L a 333 mm de Hg y 200 °C. Por combustión del 10 g del compuesto se obtienen 0,455 moles de CO₂ y 0,455 moles de agua. Calcule la fórmula empírica y molecular del compuesto.
 R = 0,082 atm.L.mol⁻¹.K⁻¹
- 6. Nombre o formule los siguientes compuestos: HgS, CaO₂, H₂MnO₄, CH₃-CH₂-CO-CH₃, (CH₃)₂CH-O-CH₃, silano, hidróxido de níquel, hidrogenosulfito de hierro(II), 1,2-dibromopropano, anhídrido acético.

BLOQUE SEGUNDO: conteste a un máximo de 2 preguntas. 2 puntos por pregunta.

7. a) Calcule la entalpía estándar de formación del propano a partir de los siguientes datos:

(1)
$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(I)$$
 $\Delta H^{\circ} = -2219.9 \text{ KJ}$
(2) $C(\text{grafito}) + O_2(g) \longrightarrow CO_2(g)$ $\Delta H^{\circ} = -393.5 \text{ KJ}$
(3) $H_2(g) + 1/2 O_2(g) \longrightarrow H_2O(I)$ $\Delta H^{\circ} = -285.8 \text{ KJ}$
3 $C(\text{grafito}) + 4 H_2(g) \longrightarrow C_3H_8(g)$ $\Delta H^{\circ} = ?$

- b) Indique en qué ley se basa para hacer dicho cálculo y defínala.
- c) Justifique si la reacción de formación de propano será espontánea a cualquier temperatura.
- 8. El pentacloruro de fósforo se disocia según: $PCI_5(g) \leftrightarrows PCI_3(g) + CI_2(g)$ siendo K_c 7,93.10⁻³ a 200 °C. Calcule:
 - a) El grado de disociación a dicha temperatura si en un matraz de un litro se introducen 3,125 g de PCl_5 .
 - b) El grado de disociación si al introducir los 3,125 g de PCI₅ el matraz estaba previamente lleno de cloro en condiciones normales.

9. Calcule:

- a) El pH de una disolución de HCl del 2 % de riqueza y 1,008 g.cm⁻³ de densidad.
- b) La masa de KOH necesaria para preparar 15 L de una disolución de pH 12,90.
- c) El pH de la disolución resultante obtenida de mezclar 10 mL de la disolución a) y 30 mL de la disolución b).

Masas atómicas: C= 12,0; CI= 35,5; H= 1; K= 39,1; Mn= 55; O= 16,0; P= 31,0; Sn=118,7.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE LOGSE

Septiembre 2009 QUÍMICA. CÓDIGO 60

CRITERIOS DE VALORACIÓN

La prueba constará de dos bloques de preguntas. El primero, Bloque I, estará compuesto de seis problemas, cuestiones o preguntas cortas de entre las que el alumno escogerá cuatro. Una de las preguntas de este bloque será formulación (formular y nombrar). El segundo bloque, Bloque II, constará de tres problemas, cuestiones o preguntas largas de las que el alumno deberá contestar a dos.

d) CRITERIOS GENERALES

Se prestará especial atención a la correcta a la correcta nomenclatura de los compuestos químicos. Los ejercicios numéricos deben resolverse hasta llegar, de forma razonada, a su resultado final expresado en las unidades adecuadas. En todo caso, se atenderá en la evaluación a la buena comprensión de los conceptos fundamentales y sus interrelaciones, más que a un cúmulo de conocimientos memorísticos.

e) CRITERIOS ESPECÍFICOS

En la siguiente tabla se relacionan los criterios específicos a aplicar en este examen, entendiendo que serán puntos asignados por respuesta correcta

Pregunta	Concepto	Puntuación parcial	Puntuación máxima	
	Apartado a)	0,5		
1	Apartado b)	0.5	1,5	
	Apartado c)	0.5		
2	Apartado a)	0,75	1.5	
	Apartado b)	0,75	1,5	
	Apartado a)	0,5		
3	Apartado b)	0,5	1,5	
	Apartado c)	0,5		

Pregunta	Concepto	Puntuación parcial	Puntuación máxima	
4	Apartado a)	1,0	1,5	
	Apartado b)	0,5		
5			1,5	
6	Fórmula o nombre correcto	0,15	1,5	
7	Apartado a)	0,8		
	Apartado b)	0,5	2	
	Apartado c)	0,7		
8	Apartado a)	1,0	2	
	Apartado b)	1,0	2	
9	Apartado a)	0,66		
	Apartado b)	0,66	2	
	Apartado c)	0,66		

CORRESPONDENCIA CON EL PROGRAMA OFICIAL

Pregunta	Corresponde al tema	Bloque	
1	Estructura de la materia		
2	Equilibrios ácido base		
3	Equilibrio químico	Bloque I	
4	Equilibrio oxidación-reducción	Bioque i	
5	Química Orgánica		
6	Formulación		
7	Energía de las reacciones químicas		
8	Equilibrio químico	Bloque II	
9	Equilibrios ácido-base		